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Lattice Boltzmann simulation of viscous fluid systems with elastic boundaries
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A lattice Boltzmann model able to simulate viscous fluid systems with elastic and movable boundaries is
proposed. By introducing the virtual distribution function at the boundary, the Galilean invariance is recovered
for the full system. As examples of application, the flow in elastic vessels is simulated with the pressure-radius
relationship similar to that of the pulmonary blood vessels. The numerical results for steady flow are in good
agreement with the analytical prediction, while the simulation results for pulsative flow agree with the experi-
mental observation of the aortic flows qualitatively. The approach has potential application in the study of the
complex fluid systems such as the suspension system as well as the arterial blood flow.
@S1063-651X~98!50701-5#

PACS number~s!: 47.60.1i, 47.10.1g, 87.45.2k
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The study of viscous fluid systems with elastic or mo
able boundaries has attracted much attention over forty y
~see, e.g.,@1,2#! due to their great relevance to the arter
blood flow as well as the suspension system in the field
complex fluids. As the need to account for the effect
changeable geometries adds considerably to the difficult
the analysis, numerical simulation plays a major role in t
field.

Conventional methods for simulating viscous fluid flo
include, macroscopically, numerical integration of t
Navier-Stokes equations, and, microscopically, molecu
dynamics simulation. The former is, however, particula
difficult to implement in complex and changeable geo
etries, while the latter is extremely computationally inte
sive. An alternative approach, the lattice Boltzmann meth
~LBM ! @3,4#, has recently proved competitive in studying t
domain of fluid flow for various physical systems@5#. De-
rived from the lattice gas automata~LGA! @6#, the LBM
inherited from the LGA most of its major advantages ov
the conventional computational method. It is easy to imp
ment and parallel in nature due to the fact that all the inf
mation transfers in local time and space. And compared w
the LGA, the LBM may suppress the statistical noise a
satisfy the requirement of the Galilean invariance.

Although numerical accuracy of the LBM is of secon
order inside the fluid, an inappropriate implementation
boundary conditions will substantially degrade the LBM
Several boundary treatments have thus been proposed
achieving second-order accuracy@7–9#, but most of them are
restricted to the systems with fixed geometries. In additi
all current approaches neglect the requirement of the G
ilean invariance at the solid-fluid boundary, which is of cri
cal importance for the fluid systems with elastic or mova
boundaries.

In this Rapid Communication we propose a lattice Bol
mann model that is capable of simulating viscous fluid s
tems with elastic and movable boundaries. This is achie
by introducing virtual distribution functions~VDF’s! at the
boundary. With this model, numerical accuracy up to sec
order is attained, and the recovery of the Galilean invaria
for the full systems including boundaryis shown by analyti-
cal analysis and verified by numerical calculation. As e
amples of application for the model, the viscous flow in el
571063-651X/98/57~1!/25~4!/$15.00
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tic vessels is simulated with the pressure-radius relations
similar to that of the pulmonary blood vessels@10#. The nu-
merical results for steady flow are in excellent agreem
with the analytical prediction, and the simulation results
pulsative flow agree with that of the aortic flows observ
experimentally@11#. These results, together with the simpli
ity and the ease of implementation of the model, suggest
our approach may be a promising tool in studying the blo
flow in arteries, especially in the diseased ones that su
from atherosclerosis, stenosis, or aneurysm. It is also
pected that the model may find applications in numeri
simulation of the suspension in the complex fluid syste
@12#.

Let us first recall some basic ideas of the LBM in th
domain of fluid flow. We choose to work on a square latti
in two dimensions. Letf i(x,t) be a non-negative real numbe
describing the distribution function~DF! of the fluid density
at sitex at time t moving in directionei . Here e05(0,0),
ei5„cosp(i21)/2,sinp(i21)/2…, i 51, 2, 3, 4, and ei
5„cosp(i2421

2)/2,sinp(i2421
2)/2…,for i 55, 6, 7, 8 are the

nine possible velocity vectors. The DF’s evolve according
a Boltzmann equation that is discrete in both space and ti

f i~x1ei ,t11!2 f i~x,t !5V i~x,t !. ~1!

The most convenient choice forV i(x,t) is a single time re-
laxation form@3#

V i~x,t !52
1

t
~ f i2 f i

eq!. ~2!

The densityr and macroscopic velocityu are defined by

r5(
i

f i , ru5(
i

f iei , ~3!

and the equilibrium DF’sf i
eq are usually supposed to b

dependent only on the local flow velocityu. A suitable
choice of which makes the macroscopic equations reco
the Navier-Stokes equations by a Chapman-Enskog pr
dure @3#.

We next describe the DF’s at the boundary. For clarity
the following description, let us define some concepts.
R25 © 1998 The American Physical Society
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Fig. 1 we show an example. The dashed line is a bot
boundary, under which is an impermeable wall. The so
box represents the nodes inside the impermeable~physical!
wall, which will be called wall nodes~WN’s! hereafter.
Similarly, the open circles in the domain of fluid are the flu
nodes ~FN’s! and the crosses denote the boundary no
~BN’s!.

Associated with each lattice node is a square of unit si
centered at the node, as shown in Fig. 1 by the shaded
Then, a node is a BN if any physical boundary crosses
square~see, e.g., nodeA in Fig. 1!.

It is clear that only part of the square of the BN is fille
with fluid, so the real fluid density at the BN is significant
less than those at its neighbored FN’s. However, in any
tice Boltzmann scheme, the sums of DF’s at neighbo
nodes should be about the same. To this end, we introd
VDF’s gi(x,t) at the BN, so that the sum of which is ap
proximately the same as those of the DF’s at its neighbo
FN’s.

We now describe the VDFgi(x,t) at the BN for flat wall,
say nodeA shown in Fig. 1. In each streaming step,

gi~x,t !5 f i~x2ei !, if the node atx2ei is an FN,

gi~x,t !5gi~x2ei !, if the node atx2ei is a BN,

gi~x,t ! is determined from nonslip condition as in@7#

if the node atx2ei is a WN, ~4!

wherei may be 0, 1, . . . ,8, whereas the velocity at the B
needed to determinegi as in @7# is obtained by quadratic
extrapolation or interpolation. Then the collision step of t
single time relaxation type is applied togi(x,t) at any BN.
However, after collision, gi(x,t) is scaled such tha
( i 50

8 gi(x,t) equalsrv, whererv is given by extrapolation
@8#,

rv52r12r2, ~5!

with r1 and r2 being the densities at the FN’s on the fir
layer and second layer~nodesB andC in Fig. 1!. This extra
scale step prevents the sum of VDF’s at the BN from vary
dependent on the component of velocity normal to

FIG. 1. Schematic plot of part of the lattice system we cons
ered. The dashed line is a bottom boundary, below which is
impermeable wall. The solid box represents the nodes inside
impermeable wall, the open circles are FN’s, and the crosses de
BN’s. The shaded square centered atA is the square associated
with the node A.
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boundary, and keeps it approximate to the fluid density
neighbored FN’s, as required by the LBM. Moreover, t
scale step helps guarantee the Galilean invariance for
simulation results~see below!.

As yet we have not described the real DFf i(x,t) at the
BN. Since there should be no VDF at any FN, we assume
the BN for the flat wall and after collision,

f i~x,t !5gi~x,t !, if the node atx1ei is an FN,

f i~x,t !50, if the node atx1ei is a BN or WN,
~6!

f 0~x,t !5r~x,t !2(
j 51

8

f j~x,t !,

where i may be 1, . . . ,8, andr is the real fluid density at
the BN ~see below!. Equation~6! leads to the fact that only
fluid particles propagate between the BN and its neighbo
FN’s, while only virtual particles propagate between neig
bored BN’s for the flat wall. When a WN just becomes a B
due to the motion of wall, the real fluid density at this no
r50. In the subsequent streaming steps, the density at
BN may increase or decrease, depending on the velocitie
the BN and the neighbored FN’s as well as the density at
neighbored FN’s.

At the BN for the nonflat wall, the VDF’s are still given
by Eq. ~4! except those forgi(x,t) with the nodesx2ei
being WN’s, which are obtained by generalizing the meth
in @7#, mainly based on the bounce-back rule for the noneq
librium part of the DF normal~or approximately normal! to
the boundary. The velocity needed to determine the VDF’
the BN is evaluated by an average of extrapolated~interpo-
lated! values of two or more directions, and so isrv in the
scale step. For the real DF’s at the BN, on the other hand,
second equation of Eq.~6! should also be modified, in orde
to guarantee the Galilean invariance. Some fluid particles
addition to virtual particles, are assumed to stream am
neighbored BN’s. Due to the limitation in length, the fu
algorithm for the VDF’s and the real DF’s at the BN for th
nonflat wall, together with its applications in systems w
~fixed and changeable! complex geometries, are present
elsewhere@13#.

Now we show that the technique guarantees that the L
results recover the Galilean invariance. Consider a chan
with a flat wall moving with a fixed velocityu5(ux ,uy)
5(u,v), whereu andv are the components of the velocit
parallel and perpendicular to the channel, respectively. W
out loss of generality, we assumev.0. After the system
becomes stable, all nodes~both FN’s and BN’s! share the
same and time-independentDF’s ~VDF’s at BN’s!. Then it
follows from Eqs.~4! and~6! that the increment of the fluid
density at any BN of the upper boundary in each time ste
g21g51g62g42g72g8 , which equalsrvv @see Eq.~3!#,
whererv5r0 @see Eq.~5!#, with r0 being the density at any
FN. Let t0 be the time that a WN atx becomes a BN andt1
the time when the BN turns to an FN, i.e.,

a WN →
at t0

a BN →
at t1

an FN. ~7!
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Then one has the fluid densityr(x,t0)50, and ( t5t0

t1 vDt

51. HereDt51 is the time step. As a result, the density
the node att1 reads

r~x,t1!5 (
t5t0

t1

rvvDt5rv (
t5t0

t1

vDt5r0 . ~8!

This new FN, therefore, has the same density as other F
yielding no perturbation when any BN becomes an F
Similar results can be obtained for the process

an FN→a BN→a WN ~9!

as well. Thus all the FN’s and BN’s will always share th
same velocityu, andthe fluid in the channel from our simu
lation is static if one observes it in a moving frame of refe
ence with velocityu. We verify this by numerical simulation
accurate up to the machine accuracy.

With the present scheme, the LBM results recover
Galilean invariance to the second order for many other s
tems. It can be proved that the increment of the fluid den
at any BN in each time step isrvv to second order@13#. It
follows from Eq. ~8! that the perturbation is small enoug
during the process~7! provided that the variance ofrv is of
second order. Things are similar for the process~9!. In the
following we take the plane Poiseuille flow as an examp
For this system with a fixed velocity componentv0 perpen-
dicular to the pipe, the velocityu5(ux ,uy)5(u,v) is ob-
tained from the Navier-Stokes equations analytically,

u5u0@12~y2v0t !2/a2#, v5v0 , ~10!

for uy2v0tu<a, where u052a2 (]p/]x)/2rn, a is the
width of the pipe,p the pressure atx, r the density, andn
the viscosity. We have carried out simulations with a vari
of t, v0 , and u0 . The range oft is from 0.6 to 10.0;v0
varies from 0.0001 to 0.01; andu0 from 0.0001 to 0.015. In
the period of Eq.~7!, our simulation results show that th
maximal value of the error erry is less than 1024, where

erry5
uuy

th~x!2uy~x,t !u

uuy
th~x!u1uuy~x,t !u

, ~11!

with uy
th(x) being the analytical velocity at nodex, and

uy(x,t) the velocity at nodex at timet from numerical simu-
lation. The ux(x,t) from our simulation is accurate up t
second order as that shown in Refs.@7,8#.

As examples of application for the present model, we p
form simulations of a long and thin plane elastic pipe w
length L. The pressurep(x) to width a(x) relationship is
assumed to be linear:

p~x!2p05a„a~x!2a0…, ~12!

wherea0 is the width when the pressure inside is fixed to
p0 ; a is a compliance constant. In the three-dimensio
case witha being the tube radius, Eq.~12! is a good repre-
sentation of the pulmonary blood vessels@10#. Denoting the
pressure at inlet and outlet byp(0) andp(L), respectively,
we assumep(0).p(L). Since the pipe is long and thin, tha
is, L@a, and the pipe is smooth under deformation, the
t
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locity can be approximated by that of the plane Poiseu
flow @10#. After some algebra, we obtain, for steady flow,
theoretical formula for the widtha(x), which is a function of
positionx for 0,x,L because of the elastic deformation

a4~x!2a4~0!5Bx, B523nQ/a, ~13!

where Q is the volume-flow rate, which is a consta
throughout of the pipe in a stationary, nonpermeable p
From this equation the pressurep(x) is given by

S a01
p~x!2p0

a D 4

2S a01
p~0!2p0

a D 4

5Bx. ~14!

For our LBM simulation, the pipe is 300 units in length s
that each~upper or bottom! boundary is composed of 30
small parts with unit length. The mass for each part is 5
Denote the momentum change at a BN bydpc in each step.
Then the force acting on the corresponding part isdpc ,
which in turn gives the velocity of the part and its displac
ment from the equilibrium location. The simulation resu
for steady flow are shown in Fig. 2 for the upper and botto
boundaries, and in Fig. 3 for the pressure. It is seen that
results are, respectively, very consistent with the analyt
predictions~13! and ~14!. In our numerical simulation,a0
513.5, a50.01, andt52.

Finally, we present our simulation results on the pulsat
flow in elastic pipes. The pipe isL units in length and 30
units in width initially with both sides closed. At discret
time t5T,2T, ... ,nT, ... ,1/810 of the total fluid particles in
the pipe are injected into the pipe from the left side a
ejected out of the pipe from the right side simultaneous
The fluid will then flow from left to right. Figure 4 displays
the typical volumetric flow wave forms~VFW’s! through the
cross section at the middle of the pipe forT5725. It is
striking to find that the VFW’s forL5600 andL5350 are
quite similar to the experimental results for the aortic flo
and the left anterior descending coronary flow~see Fig. 5 in
@11#!. There is backflow and an inflexion~or dip! before the
vfw reaches its peak each time, resulting from the ela
behavior of the pipe. Considering that the simulation is p
formed in two dimensions while the experiment is in thr
dimensions, the agreement between our simulation res
and the experimental ones@11# is rather satisfactory. Thes

FIG. 2. The analytical prediction~—! and numerical simulation
(3) of the boundaries of a long and thin elastic pipe along
channel.
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results suggest that the present model may provide an a
native approach to simulating the blood flow in an artery

To summarize, we have described a lattice Boltzma
model that is able to simulate viscous fluid system with m
able boundaries, the main new feature of which is the in
duction of VDF’s at BN’s. This enables us to obtain an ov
all lattice Boltzmann model that satisfies the requiremen
the Galilean invariance macroscopically. As examples of
plication, both the steady flows and the pulsative flows
elastic pipes are simulated. The former is found to be
excellent agreement with the theoretical prediction, while
latter shows pulsative behavior comparing favorably w
that of the aortic flows observed experimentally.

It should be noted that the conventional methods
simulating blood flow in an artery include numerical integr
tion of the Navier-Stokes equations@14#, which is extremely
computationally intensive and particularly difficult to imple
ment in complex geometries, especially for the diseased
teries that suffer from atherosclerosis, stenosis, or aneury
With the present model, such systems can be easily si

FIG. 3. The analytical prediction~—! and numerical simulation
(1) of the pressure in the same elastic pipe of Fig. 2. The das
line is a linear connection between the beginning and ending po
which should be the result for a rigid pipe.
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lated by simply changing the masses and the elastic cons
of the corresponding parts of the vessel wall along with
geometry. In Fig. 4, we show, as an example, the typi
VFW for a simple model of diseased arterial vessel. T
model is obtained from the system withL5600 by simply
decreasing by 60% the masses for the parts of both~upper
and lower! walls that located at a distance of 200 to 210 un
from the left end. Compared with the result for the syste
with uniform mass distribution~dashed line in Fig. 4!, the
change in pusaltive behavior of the VFW for the diseas
model~dotted line in Fig. 4! is clearly seen. More numerica
results on this subject as well as the bifurcation behavio
the arteries had already been obtained@13#. In addition, the
model may also provide an alternative and competitive
proach in simulating some complex fluid systems such
moving objects in a fluid~see, e.g.,@15#! and suspension
system@12#. Work along this line is also in progress.

We are indebted to Professor Ruibao Tao for his stim
lating discussion. This work was partly supported by NS
Grant No. 19704003.

ed
ts,

FIG. 4. The VFW’s with respect to timet for a time period of
3T in an elastic pipe forL5350 ~solid line! and L5600 ~dashed
line!. Also shown in the figure~dotted line! is a plot of vfw’s with
respect to time in an elastic vessel with the masses for some pa
the wall decreased by 60%~see text for details!.
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